
Definition 1. A functor F : C → D between categories C and D is a mapping of
objects to objects and arrows to arrows in such a way that

1. F(f : A→ B) = F(f) : F(A)→ F(B),
2. F(g ◦ f) = F(g) ◦ F(f),
3. F(1A) = 1F(A).

For each category C, we have the identity functor 1C : C → C taking each
object and morphism to itself. One can then show that it is possible to form the
categories Cat of small categories and functors and CAT, the category of locally-
small categories and functors.

Consider the following theorem from Group Theory:

Theorem 1 (Cayley). Every group G is isomorphic to a group of permutations.

With such a theorem for groups in mind, observe that it is also possible to think
of small categories in a "concrete" sense as well:

Theorem 2. Every (small) category C is isomorphic to a category in which the objects
are sets and the arrows are functions.

Sketch proof. Define the Cayley representation C of the category C to be the following
category:

• objects are sets of the form c := { f ∈ C | cod f = c},

• arrows are functions g : c → c′ for g : c → c′ in C, defined for any f : x → c
in c by g(f) := g ◦ f .

Note that the term concrete is motivated by the following definition:

Definition 2. A category C is called concrete if there is a functor U : C→ Set such
that for any pair of objects c, c′ ∈ C, the induced functions

Uc,c′ : Hom(c, c′)→ Hom(Uc, Uc′)

are injective. This condition is also referred to as being faithful.

In light of this, we see Theorem 2 states that every small category is concrete.
Now, let’s produce some new categories out of existing ones.

(1) The product of two categories C and D, written C×D has objects of the form
(c, d) for c ∈ C, d ∈ D and arrows of the form (f , g) : (c, d) → (c′, d ′) for
f : c→ c′ ∈ C and g : d → d ′ ∈ D. The composition and identities are defined
componentwise, and notably, the category has two "projection" functors

C
π1← C×D

π2→ D

1

(2) The opposite (or dual) category Cop of a category C has the same objects
as C and has arrows f ∗ : c∗ → c′∗ for each arrow f : c′ → c in C; that is,
it is the corresponding category with all arrows "formally turned around".
Furthermore, the identities are defined to be 1c∗ := (1c)∗ and composition by

f ∗ ◦ g∗ := (g f)∗

(3) Given two functors F : A→ C and G : B→ C, the comma category F↓G is the
category with objects (a, b, h : Fa→ Gb) where a ∈ A, b ∈ B and h ∈ C, and
arrows (f , g) : (a, b, h)→ (a′, b′, h′) for f : a → a′ and g : b → b′ such that
the following diagram commutes:

Fa Gb

Fa′ Gb′

h

GgF f

h′

Notice that this category has two "projection" functors, namely: F↓G→ A,
where we take objects to the corresponding objects in A and arrows
to the corresponding arrows in A, i.e., in this case, (a, b, h) to a and
(f , g) : (a, b, h)→ (a′, b′, h′) to f : a → a′. We have a similar functor for
F↓G→ B.
As special examples of this category, consider the following:

i The arrow category C→ is obtained by 1C↓1C, where 1C is the identity
functor. Notice that the projection functors in this case can be labeled as
dom and cod (show this!)

ii Consider the slice and coslice categories for a dedicated object c ∈ C.
Notice that for a dedicated object, we have the functor c : 1→ C from the
single object category to our category C, taking the single object and its
identity morphism to the object c and the respective identity morphism
in C. Then, the slice and coslice categories are just c↓1C and 1C↓c, or
more simply written, just c↓C and C↓c.

Definition 3 (Free monoid). Start with an "alphabet" A of "letters"

A= {a, b, . . . }

• A word over A is a finite sequence of letters

• We write "␣" for the empty word.

• The "Kleene closure" of A is defined to be the set A∗ of all words over A.

Notice that A∗ is a monoid with concatenation and the empty word.

2

