1. Consider the category Top_* of pointed topological spaces and the category Grp of groups. Then, for $1 \leq n \in \mathbb{N}$, the fundamental groups π_n act functorially on pointed spaces and continuous functions. In other words, the fundamental groups are functors

$$\pi_n: \operatorname{Top}_* \to \operatorname{Grp}$$

- 2. Consider the categories: (a) Top of topological spaces, (b) Ch of chain complexes and chain maps and (c) Ab of abelian groups and homomorphisms. Then, for any $n \in \mathbb{N}$, the homology functors $H_n : \text{Top} \to \text{Ab}$ can actually be considered to be the composite $H_n = H_n \circ C_*$ of two functors:
 - (a) The functor $C_* : \text{Top} \to \text{Ch}$ taking a space X to the chain complexes generated by simplices $\Delta^n \to X$ and continuous functions to chain maps defined by composition,
 - (b) The algebraic functor H_n : Ch \rightarrow Ab taking a chain complex to the associated homology group and chain maps to the associated group hom.
- 3. For the category Man_*^p of pointed class C^p manifolds and class C^p maps preserving the points, there is a functor $d : \operatorname{Man}_*^p \to \operatorname{Vect}_{\mathbb{R}}$ taking a manifold to the tangent space at its dedicated point and a differentiable map to its derivative:

$$d(\mathbf{M}, x_0) \coloneqq \mathrm{TM}_{x_0}$$
$$d(f: (\mathbf{M}, x_0) \to (\mathbf{N}, y_0)) \coloneqq df_{x_0} : \mathrm{TM}_{x_0} \to \mathrm{TN}_{y_0}$$

Note that one needs to do more work to see the functoriality, but the whole reason this is a functor is because the Chain Rule provides well-definedness for composition!

4. Let $f : A \to B$ be a function between sets. The (covariant) power-set functor $\mathscr{P} : \text{Set} \to \text{Set}$ takes sets A to their powersets $\mathscr{P}A$, and takes functions $f : A \to B$ to direct image functions

$$\mathscr{P}f:\mathscr{P}A \to \mathscr{P}B, U \subset A$$

 $\mathscr{P}f(U) := \{f(u) \mid u \in U\} \subset B$

5. For any (locally-small) category **C** and any object $c \in \mathbf{C}$, the hom-functors $\operatorname{Hom}(c, -) : \mathbf{C} \to \operatorname{Set}$ takes objects and morphisms to

$$\operatorname{Hom}(c, a) \coloneqq \{f : c \to a \mid f \in \mathbf{C}\}$$
$$\operatorname{Hom}(c, g : a \to b) \coloneqq g_*(f : c \to a) = g \circ f : c \to a \to b$$