
We’ve previously seen constructions like products, equalizers, pullbacks, and
also their dual counterparts. We have observed that every object had the following
properties in their definitions:

1. A collection of objects and morphisms with which the objects are related
through special morphisms,

2. A commutativity condition on the total collection of objects and morphisms,
3. And a finality condition over any other object with morphisms satisfying the

above two.

This was not a mistake. These objects are examples of what are known as limits
(and their duals colimits) and are crucial in the discussion both leading up to, and
during defining limits. As a preliminary, we make the following definitions.

Definition 1. Let C be a category, and J a small category. A functor F : J → C is
called a J-shaped diagram, or a diagram of shape J, or simply, a diagram.

Examples of diagrams are plentiful, so one is encouraged to find some themselves.
As a bit of foreshadowing, one can consider diagrams indexed by categories spanned
by sets, diagrams of shape • « • and of shape • → • ← • (and also their dual
diagrams!)

Remark 1. Given a shape J→ C and an object c ∈ C, one can consider the constant
diagram of shape J. This diagram, denoted ∆(c) : J → C takes every object j ∈ J
to the object c ∈ C, and every morphism α : j → k ∈ J to the constant morphism
1c : c → c ∈ C. Note that we then have a functor called the "constant diagram
functor" ∆ : C→ CJ, sending every object c of C to its constant diagram ∆(c) and
every morphism f : c→ c′ to the transformation sending every image to c′ through
post-composition. What we describe is:

∆(c) : J→ C, ∆(c)( j) := c, ∆(c)( j→ k) := 1c

∆( f : c→ c′) :∆(c)→∆(c′), ∆( f ) j = f : c→ c′

∆(c) j ∆(c′) j

c c′

∆( f ) j

f

Definition 2. Let C,D be categories and F, G : C → D functors between them. A
natural transformation α : F⇒ G is a collection of morphisms (αc : Fc→ Gc)c∈C in
D, indexed by the objects of C such that given any pair of objects c, c′ ∈ C, and any
morphism f : c→ c′, all diagrams of the following shape commute:

Fc Gc

Fc′ Gc′

F f G f

αc

αc′
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One does not need to search much for such natural transformations. The concept
of being natural in classical mathematics often refers to the idea that the morphism
in question assembles into a natural transformation under the objects of the category.
Some examples include:

• Suppose we have two chain complexes C• and D•. A chain map between them
is a collection of group homomorphisms such that the associated squares are
commutative. Diagrammatically,

. . . Cn Cn−1 Cn−2 . . .

. . . Dn Dn−1 Dn−2 . . .

fn fn−1 fn−2

commutes at each square. Now, if we were to consider such complexes as
instead diagrams of shape (N,≤) (the shape here does not matter, pick whatever
linear poset that suits your homology theory), then the chain map f : C•→ D•
can instead be simplified to be a natural transformation f : C• ⇒ D•, with
components fn : Cn→ Dn.

•

Let X be a set. We have the powerset functor
P : Set→ Set taking each set to its powerset, and each
morphism f : X → Y to its direct image morphism
(A ⊂ X) 7→ ( f (A) ⊂ Y). Now, additionally, there is also
a transformation X ,→P (X) taking each element x of
X to its singleton set {x}, and each morphism f : X→
Y to the morphism across commuting the associated
diagram. It can be seen from the diagram that the
naturality condition gives that P ( f )({x}) = { f (x)}.

X P (X)

Y P (Y)

f P ( f )

The maps X ,→ P (X) can be shown to be natural in X, giving a natural
transformation 1Set⇒P .

Returning to our previous constructions, we wish to generalize their definitional
pattern as much as possible. The third condition is already in a categorical state,
but the first two conditions may be generalized, which is what we will do now.

Definition 3 (Cone I). Let F : J→ C be a diagram. a cone over F (or simply a cone
of F) is an object c ∈ C, together with a collection of morphisms (λ j : c → F j) j∈J
such that given any pair of objects j, k ∈ J and any morphism α : j → k ∈ J, the
diagram in Figure 1 commutes.

Similarly, a cone under F (or simply a cocone of F) is an object c′ ∈ C, along with
a collection of morphisms (ϵ j : F j → c′) j∈J ∈ C such that given any pair of objects
and morphisms from J the diagram in Figure 2 commutes.
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c

F j Fk

λ j λk

Fα

Figure 1: Cone diagram

F j Fk

c′

ϵ j ϵk

Fα

Figure 2: Cocone diagram

Note that this definition captures the idea we had before with products, equalizers,
pullbacks (even terminal objects!) in the sense that each such object we described
had morphisms going down into the diagram. The commutativity condition is
further induced by some morphisms that we hadn’t seen, two of which are shown
below.

equalizer pullback •

• • • •

λ• λcommute

λ1

λ2
λcommute

This definition is visually intuitive, and certainly in-line with what we’ve seen
so far, but the following alternative definition provides a cleaner description of the
topic:

Definition 4 (Cone II). Let F : J→ C be a diagram. A cone over F with apex c is an
object c along with a natural transformation c⇒ F, where c : J→ C is the constant
diagram defined above. Dually, a cone under F with nadir c (or a cocone of F) is an
object c along with a natural transformation F⇒ c.

Exercise 1. Show that the two definitions of cones and cocones agree. As a hint,
note that you can rewrite the first commutative diagram as

c c c

F j Fk F j Fk

λ j λk

Fα

λ j λk

Fα

1c

Fixing a specific diagram F : J→ C, we can talk about the category Cone(F) of
cones over said diagram. Such a category has the cones and natural transformations
as objects, and as morphisms: f : c→ c′ in C such that for any leg λ j : c→ F j and
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ϵ j : c′→ F j, the diagram below commutes

c c′

F j

ϵ jλ j

f

which, in turn, means that f ∗(∆(c′)) = ∆(c) is also a cone over F. The cocone
category of F is defined similarly. With this, we are ready to discuss limits and
colimits.

Definition 5. Let F : J→ C be a diagram. A limit of the diagram F, denoted limJ F,
is a terminal object in Cone(F). Dually, a colimit of the diagram, denoted colimJ F
is an initial object in Cocone(F).

Theorem 1. Given a diagram F : J → C, if the limit of the diagram exists, then it is
unique up to isomorphism. Dually, the colimit is unique up to isomorphism if it exists.

Proof. We prove the limit case. If the limit exists, then it is a terminal object of
Cone(F). We know that any two terminal objects of a category are isomorphic.

Some immediate examples are as follows:

(i) Let X be a set, and J = C(X) the category generated by the set X. Then the
object limJ F is the product

∏

j∈J F j. Similarly, the coproduct
∐

J F j is the
colimit of the same diagram.

(ii) Let J be the cospan category • → • ← •. The limit of this diagram is a
pullback. In a dual fashion, the colimit of the span category • ← • → • is
a pushout. Notice that the arrows of both the cone and the diagram have
inverted (as one would expect from the dual notion).

(iii) Consider the special case for the category J = C(;). In this case, the limit of
this diagram is just a terminal object in C, and the colimit is an initial object.
This implies that a 0-ary product is just a terminal object, and dually for the
initial object.

(iv) For the diagram of shape • « •, we get the equalizer of the diagram. The
dual notion gives the coequalizer of the dual diagram Jop.

(v) Here is one nontrivial example of a colimit, motivated by topology. Consider
the construction of a CW complex with cells and attaching maps; the process
is recursive, starting with a collection of vertices, and attaching cells along
the boundaries we identify with using said attaching maps. The process for
attaching each cell can be given by

Xn−1 ∪ϕn−1,k
Dn

4



Note that this construction requires that the boundary of the cell we’re attaching
be identified, i.e., that the following diagram commutes for each attaching
map ϕn−1,k.

Xn−1 ∪ϕn−1,k
Dn Dn

Xn−1 Sn−1
ϕn−1,k

One can see that this construction is a pushout along the attaching maps and
the boundary inclusion maps.
Now, we can collect each such attaching map ϕn−1,k in a collection Jn−1.
Giving this set the discrete topology, we can instead say that the following
diagram is a pushout diagram

Xn−1 ∪ϕn−1
Dn Dn

Xn−1 Jn−1 × Sn−1
ϕn−1

γn−1

where ϕn−1 identifies each point (ϕn−1,k, z) 7→ ϕn−1,k(z). In this construction,
we then set the n-skeleton to be Xn := Xn−1 ∪ϕn−1

Dn. Now, specifying the
associated attaching maps, we obtain the following diagram, generated by
the skeleta Xk and their relevant inclusion maps γk, generated by the above
process:

X0 X1 X2 . . .
γ0 γ2γ1

Then, the CW complex X is the smallest space containing each skeleton and
the inclusions, or rather in categorical terms, X := colimn∈(N,≤)Xn. Diagrammatically,

colimn∈(N,≤)Xn

X0 X1 X2 . . .
γ0 γ2γ1

...

As a final note on the subject, if you have encountered any connected sums
A ∪ f B before, you may notice that conventionally, these spaces were constructed
by taking quotients x ∼ f (x) over disjoint unions A ⊔ B. Notice that this
process is just taking coproducts and coequalizers. This is not a coincidence,
and we will discuss this relationship between coproduct/coequalizers and
colimits.
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