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Algebraic Topology

Algebraic Topology relies on the computation of groups (or generally,
algebraic invariants) of topological spaces – fundamental groups and
(co)homology groups.
At the point of category theory being developed, the subject of
algebraic topology had already developed in a multitude of ways.1

What is known to be category theory arises from an investigation of
"natural equivalences".[1]

1There had already been multiple homotopy theories at this point, with attempts to
unify it. Check Fifty years of Homotopy Theory by Whitehead for more details:
https://www.ams.org/journals/bull/1983-08-01/S0273-0979-1983-15072-3/
S0273-0979-1983-15072-3.pdf
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Category theory begins to act as a language for homological algebra,
or by a better name, "abstract nonsense".
By Grothendieck’s contributions, the subject begins to detach from
algebraic topology and is also utilized in algebraic geometry.[2]
Also, the development of adjunctions begins to deepen category
theory. Such a development births concepts such as limits and
colimits2, which benefit homotopy theory with the characterization of
universal constructions.

2This is not by mistake. Theorems such as RAPL [3] show that there is a deeper
connection between adjunctions and (co)limits than at first glance.
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Major developments in how categories are used

Following the progress in category theory itself, the applications of
categories to other areas of mathematics have became prevalent. Although
always in the background, the use cases for category theory had become
somewhat detached from purely topology – they were being used in various
subjects, like algebraic geometry, logic and universal algebra to name a few.
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Some of the progress in logic, achieved by Lawvere are[2]:
i. Axiomatizing the category of sets,
ii. Formulating completeness theorems for logical systems by categorical

methods,
iii. Representing quantifiers as adjoint functors.
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Diagrams

Diagrams often help simplify notions and constructions. Consider an
abelian group G . Then, as a consequence of the first isomorphism theorem
for groups, we have that

For every (normal) subgroup K ⊴ G , we have a group homomorphism
q : G → S such that ker q = K , and
The kernel of every group homomorphism f : G → H is normal.

These properties are conventionally described by the diagram on the left,
but can also be captured by this diagram (in Ab):

G G/ker f K G G/K

H H

f

q

f̄

02

f

01

q

f̄
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Similarly, for an equivalence relation E (with the discrete topology) over a
space X gives the quotient space q : X → X/E , the relationship of which
can be shown by the diagram

E X X/E

Y

f

q

r1

r2

f̄

where f is any continuous function with f (r1(e)) = f (r2(e)), which just
means that f is constant under the same equivalence classes. If you recall
any of the two definitions of a quotient space, you’ll see why this condition
is necessary; this way, for any continuous map keeping the equivalence
classes the same, it actually passes through X/E and this is its universal
property.
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Duality

Example
Let k be a field, and let V be a vector space over k. The dual space V ∗ of
V is defined to be the following vector space over k:

Hom(V ,k) = {L : V → k | L is a k-linear transformation.}

Then, for any k-linear transformation T : V → W , we have the induced
"dual transformation"

T ∗ := Hom(T ,k) : W ∗ → V ∗

T ∗(L : W → k) = L ◦ T : V → W → k
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For a group G , suppose X is a (left) G -set. The action of each element
g ∈ G over X is a special function g · − : X → X . Now, the dual of this
set with the group action is again a set X , but this time with a right
G -action, where the compositionality of the group action is reversed:

left action: (gh) · x = g · (h · x)
right action: (gh) ·op x = h ·op (g ·op x)

alternatively written: x ·op (gh) = (x ·op g) ·op h
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Diagrams internal to categories

Since there is support for diagrams, one can talk about structures:

Definition
A monoid is a set M, together with a binary action ε : M ×M → M and a
dedicated element e ∈ M such that

1 ∀x ∈ M, ex = x = xe

2 ∀x , y , z ∈ M, (xy)z = x(yz).
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We can rephrase this entirely diagrammatically as:

Definition
A monoid is a set M, together with a binary action ε : M ×M → M and a
dedicated element η : 1 → M such that the following diagrams commute:

M M2 M3 M2

M2 M M2 M

1M×η

1M
ε

1M×ε

ε

ε

ε×1M

ε

η×1M

where 1 is the monoid with one element. (Note that Mk just denotes the
cartesian product k times – do not think of it as anything else.)
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The central idea: for an object in a category C , if it satisfies the
diagrammatic monoid requirements, it is a C -monoid.

Example
If M is a topological space with continuous maps η : ∗ → M and
ε : M ×M → M satisfying the monoid axioms, then it is a topological
monoid.

Example
If R is an abelian group that also has maps η : Z → R and ε : R ⊗ R → R
such that the following diagrams commute, then it is an abelian group
monoid, or more commonly, a unital ring!

R R ⊗ R R ⊗ R ⊗ R R ⊗ R

R ⊗ R R R ⊗ R R

η⊗1R

ε1R⊗η

ε

1R

ε⊗1R

1R⊗ε

ε

ε
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Limit and colimit objects

Example
Let X be a topological space, and A ⊂ X any subset. Keep in mind that
the closure of A in X is the smallest closed set Ā such that if any closed
set B contains A, then it also contains Ā.
Consider the partially ordered set (CA,⊂) with points as closed sets of X
containing A, ordered under subset inclusion. Then the closure of A is an
example of a limit – more specifically, of a diagram indexed by (CA,⊂).

Example
Similarly, considering the real numbers, given a non-empty subset K ⊂ R
bounded above, the supremum sup K is an example of a colimit object,
one of a diagram indexed by the poset (K ,≤) of elements of K ordered by
the usual number order ≤.
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Adjunctions

Here are two examples for a similar sort of adjunction:

Example

Let A,B,C be sets, and let CB denote the set of all functions B → C .
Then, notice that for any function f : A× B → C , if we fix a ∈ A, we
obtain a new function f (a,−) : B → C . Similarly, if we have a function
g : A → CB , then we can obtain a new function ḡ : A× B → C by
defining ḡ(a, b) := g(a)(b).a In an expression, this just means we have the
following bijection:

Hom(A× B,C ) ∼= Hom(A,CB)

aIn computer science and mostly in type theory, this sort of destructuring is often
called currying, named after Haskell Curry. In type systems, it is the case that
A× B → C and A → B → C are considered to be the same thing. Refer to [4] for more
details.
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Example
Suppose U,W ,V are vector spaces over some fixed field k. Note that the
previous example works functionally the same:

Linear(A⊗ B,C ) ∼= Linear(A,CB)

Please note that CB is the vector space of linear transformations B → C ,
turned into a vector space pointwise: (cT + G )(v) = cT (v) + G (v). The
symbol ⊗ denotes the tensor product (⊗k).
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